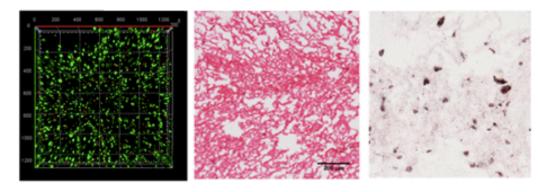


An Investigation of Nanocellulose/Chitosan-Based Injectable Hydrogels

Noah Dover; Biomedical and Health Sciences Engineering Benhabbour Lab; UNC/NSCU Joint Department of Biomedical Engineering 7/27/2021

Objective/Hypothesis


- Goal: To determine what effects cell density in the hydrogel scaffolds will have on
- 1. Osteogenesis Markers
- 2. Regenerative Outcomes

Osteoporosis is a highly prevalent disease throughout the United States. Optimizing a hydrogel's regenerative properties would aid in the treatment of this disease.

Results

High Cell Viability and Promoted Osteogenesis

The results indicate great potential in the hydrogel. Future studies will aim to perfect the cell density contained in the scaffold.

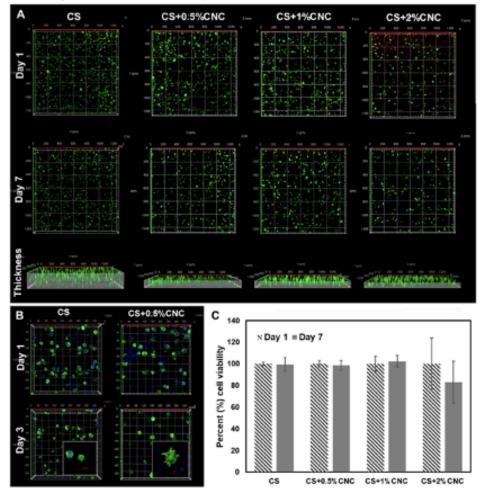


Fig. 6. In vitro cell-based assays of encapsulated cells in hydrogels A) Z-stacking confocal images of MCST3-E1 cells encapsulated in different hydrogel formulations. Live cells stained by Calcein-AM are represented in green. Dead cells stained by Ethidium Homodimer-1 are represented in etd. B) Morphology of MCST3-E1 cells encapsulated in different hydrogel formulations. The cytoskeletons and suclei of cells were stained by Acti-stain phalloidin and 4',6-diamidino-2-phenylindole (DAPI), respectively. C) Percent cell preliferation on day 7 compared to day 1 in each hydrogel formulation using cell counter imaged analysis.